Interferon Regulatory Factor 7 Protects Against Vascular Smooth Muscle Cell Proliferation and Neointima Formation

نویسندگان

  • Ling Huang
  • Shu‐Min Zhang
  • Peng Zhang
  • Xiao‐Jing Zhang
  • Li‐Hua Zhu
  • Ke Chen
  • Lu Gao
  • Yan Zhang
  • Xiang‐Jie Kong
  • Song Tian
  • Xiao‐Dong Zhang
  • Hongliang Li
چکیده

BACKGROUND Interferon regulatory factor 7 (IRF7), a member of the interferon regulatory factor family, plays important roles in innate immunity and immune cell differentiation. However, the role of IRF7 in neointima formation is currently unknown. METHODS AND RESULTS Significant decreases in IRF7 expression were observed in vascular smooth muscle cells (VSMCs) following carotid artery injury in vivo and platelet-derived growth factor-BB (PDGF-BB) stimulation in vitro. Compared with non-transgenic (NTG) controls, SMC-specific IRF7 transgenic (IRF7-TG) mice displayed reduced neointima formation and VSMC proliferation in response to carotid injury, whereas a global knockout of IRF7 (IRF7-KO) resulted in the opposite effect. Notably, a novel IRF7-KO rat strain was successfully generated and used to further confirm the effects of IRF7 deletion on the acceleration of intimal hyperplasia based on a balloon injury-induced vascular lesion model. Mechanistically, IRF7's inhibition of carotid thickening and the expression of VSMC proliferation markers was dependent on the interaction of IRF7 with activating transcription factor 3 (ATF3) and its downstream target, proliferating cell nuclear antigen (PCNA). The evidence that IRF7/ATF3-double-TG (DTG) and IRF7/ATF3-double-KO (DKO) mice abolished the regulatory effects exhibited by the IRF7-TG and IRF7-KO mice, respectively, validated the underlying molecular events of IRF7-ATF3 interaction. CONCLUSIONS These findings demonstrated that IRF7 modulated VSMC proliferation and neointima formation by interacting with ATF3, thereby inhibiting the ATF3-mediated induction of PCNA transcription. The results of this study indicate that IRF7 is a novel modulator of neointima formation and VSMC proliferation and may represent a promising target for vascular disease therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: Interferon regulatory factor 9 is critical for neointima formation following vascular injury

Interferon regulatory factor 9 (IRF9) has various biological functions and regulates cell survival; however, its role in vascular biology has not been explored. Here we demonstrate a critical role for IRF9 in mediating neointima formation following vascular injury. Notably, in mice, IRF9 ablation inhibits the proliferation and migration of vascular smooth muscle cells (VSMCs) and attenuates int...

متن کامل

Counter-regulatory function of protein tyrosine phosphatase 1B in platelet-derived growth factor- or fibroblast growth factor-induced motility and proliferation of cultured smooth muscle cells and in neointima formation.

OBJECTIVE We have previously reported that vascular injury or treatment of cultured vascular smooth muscle cells with platelet-derived growth factor-BB (PDGF-BB) or fibroblast growth factor-2 (FGF2) increases the levels of protein tyrosine phosphatase (PTP)1B. The current study was designed to test the hypothesis that PTP1B attenuates PDGF- or FGF-induced motility and proliferation of cultured ...

متن کامل

Activation of nuclear receptor Nur77 by 6-mercaptopurine protects against neointima formation.

BACKGROUND Restenosis is a common complication after percutaneous coronary interventions and is characterized by excessive proliferation of vascular smooth muscle cells (SMCs). We have shown that the nuclear receptor Nur77 protects against SMC-rich lesion formation, and it has been demonstrated that 6-mercaptopurine (6-MP) enhances Nur77 activity. We hypothesized that 6-MP inhibits neointima fo...

متن کامل

A central role of interferon regulatory factor-1 for the limitation of neointimal hyperplasia.

Neointima formation, the leading cause of restenosis after catheter angioplasty, is a paradigm for vascular proliferative responses. Neointima formation is self-limiting after a variable degree of tissue growth, causing significant renarrowing in a substantial number of patients. To investigate the mechanisms that limit neointima formation we studied the role of the transcription factor IRF-1, ...

متن کامل

VEGF regulates remodeling during permanent anatomic closure of the ductus arteriosus.

Anatomic remodeling and permanent closure of the newborn ductus arteriosus appears to require the development of intense hypoxia within the constricted vessel wall. Hypoxic ductus smooth muscle cells express vascular endothelial cell growth factor (VEGF). We studied premature baboons and sheep to determine the effects of VEGF inhibition (in baboons) and VEGF stimulation (in sheep) on ductus rem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014